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OBJECTIVE: The aim of this study is to determine the effect of pinealectomy and exogenous melatonin

STUDY DESIGN: Twenty-one Wistar rats were divided into 3 groups: (I) Sham-operated (Non-Px), (II)

pinealectomized (Px), (III) pinealectomized and melatonin. Sham and Px groups had received vehicle

whereas group III had received 4 mg/kg melatonin. Terminal deoxynucleotidyl transferase-mediated de-

oxyuridine 5-triphosphate nick end-labeling activity (TUNEL) assessment was used to identify follicles

that contain fragmented nuclei, an indication of apoptosis. TUNEL staining was evaluated semi-quanti-

tatively and ovarian cysts were counted. 

RESULTS: In Px group, TUNEL activity was significantly higher than sham group. Melatonin adminis-

tration did not reduce the intensity of TUNEL positive follicles. The difference between pinealectomy and

melatonin groups regarding TUNEL activity was insignificant. Significantly increased ovarian cysts were

detected after pinealectomy and melatonin did not prevent this increase. Px and melatonin groups were

not significantly different than each other regarding the TUNEL activities and ovarian cysts.

CONCLUSIONS: Pinealectomy increases ovarian cysts and apoptosis in the follicles that can not be

prevented by melatonin which was probably a result of the dose and duration of melatonin.

(Gynecol Obstet Reprod Med;14:1 19 - 24)
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Introduction

Melatonin has been implicated in the control of physiolog-
ical processes, including circadian rhythmicity and the pho-
toperiodic control of seasonal breeding in mammals. Humans
are not seasonal breeders. On the other hand, seasonal fluctu-
ations have been described in human and melatonin also ap-
pears to exert an important role in the neuroendocrine regula-
tion of human reproduction.1 In mammalian ovary, small frac-
tion of oocytes ovulates during the reproductive life, whereas
the majority of ovarian follicles undergo atresia by a hormon-
ally regulated apoptotic mechanism. Recent studies have
demonstrated that apoptotic cell death is associated with fol-
licular atresia in chicken, porcine, and rodent ovaries.2,3

Melatonin is a chemical mediator produced mainly in the
pineal gland.4 It has also been shown to modulate immune
functions, growth processes and oxidative reactions.5,6

Apoptosis is a highly regulated and programmed suicide
mechanism of the cell.2,3 The most recently described property

of melatonin is its antiapoptotic effect in thymocytes7 and neu-

ronal cells.8 However, the mechanisms by which melatonin

acts on the neuroendocrine systems are not known. Molecular

study on sheep pars tuberalis, a major neuroendocrine target

for melatonin, have shown that melatonin alone has no direct

effect on a number of intracellular signal transduction

processes.9 While melatonin has a progonadotrophic effect in

photoperiodic species, it has antigonadotrophic properties in

rodents.10,11 The down-regulation of gonadotropin-releasing

hormone (GnRH) gene expression and secretion in GT1-7

cells by melatonin supports the hypothesis that the hypothala-

mus is a major target tissue for the antigonadal action of mela-

tonin.12 Moreover in vitro melatonin inhibits GnRH induced

luteinizing hormone (LH) release by cultured rat pituitary

glands.13 Melatonin also inhibits GnRH induced increases in

cAMP, diacylglycerol and c-Fos in neonatal rat go-

nadotrophs.14 As a result, melatonin reduces the release of LH

and follicle-stimulating hormone (FSH).15 Implants or infu-

sion of melatonin in the hypothalamus mimic or block pho-

toperiodic responses in several species.12,16,17 Deboleena et

al.12 showed the inhibitory nature of melatonin on GnRH se-

cretion.12 Because treatment with GnRH or its agonists antag-

onizes the gonadotropin stimulation of follicle development,

GnRH has been suggested to induce atresia in the ovary.18

Freeman et al.19 demonstrate that GnRH may act as an atreto-

genic factor for follicles and increase atresia. In addition to an-

tioxidant and antiapoptotic properties, inhibitory effect of

melatonin on GnRH secretion prompt us possible clinical ap-

1Department of Obstetrics and Gynecology, 2Department of
Pharmacology, 3Department of Pathology Inonu University Medical
Faculty  Malatya, Turkey

Address of Correspondence: Önder Çelik  
Inonu University Medical Faculty 
Department of Obstetrics and 
Gynecology Malatya, Turkey
oncelik@inonu.edu.tr

Submitted for Publication: 28.11.2007
Accepted for Publication: 24.12.2007



plications of this chemical in the prevention of free radical

damage and apoptosis in follicular atresia. The present study

tests this hypothesis by assessing preventive effects of mela-

tonin on apoptotic changes in pinealectomized rats ovary.  

Material and Methods

Experimental conditions
Twenty-one female Wistar rats, aged 6-8 weeks, and 150-

200 g of weight were kept in temperature (21-22 C) and hu-

midity (60±5%) controlled conditions. A 12:12 hr light and

dark cycle was maintained. Food and water were available ad

libitum. Rats were divided into three groups of seven rats per

each: (I) Sham-operated rats (Non-Px), (II) Pinealectomized

and placebo-treated rats (Px), (III) Pinealectomized and mela-

tonin-treated rats (Px+melatonin).  

Pinealectomy
Pinealectomy was performed as described by Hoffman and

Reiter.20 Rats were anesthetized preoperatively by intraperi-

toneal (i.p.) application of a mixture consisting of ketamine

hydrochloride (75 mg/kg) and xylazine hydrochloride (8

mg/kg). The entire procedure was completed within 15 min.

Rats in sham-operated group underwent similar surgical pro-

cedures with no removal of pineal gland.  

Melatonin Treatment
Melatonin (Sigma Chemical Co., St. Louis, MO, USA)

was dissolved in ethanol and diluted in saline to give a final

concentration of 1% ethanol. Rats in sham and Px groups had

only received vehicle whereas group III had received 4 mg/kg

melatonin. This dose was chosen as it was previously used for

the blocking of the production of reactive oxygen species.21

Pinealectomy in the rat induces a significant increase of the ar-

terial blood pressure within 15 days from the surgical proce-

dure and this increase is still present 30 and 60 days after

pinealectomy.22 To avoid from hypertension, melatonin ad-

ministrated after the 60th day of pinealectomy on a daily basis

for 21 days. At the end of study, rats were sacrificed and the

ovaries were removed.   

Histopathological analysis
All harvested ovarian specimens were fixed in 10%

formaldehyde solution for 24 h. After fixation they were

processed in usual manner, and embedded in paraffin. Five-

micrometer thick sections were taken onto polylysine-coated

slides. Then the slides were deparaffinized in usual manner

(oven at 65 C for 1 hour, xylene treatment, and through graded

alcohols to water). In the present study, TUNEL assay was

used to identify cells containing fragmented nuclei, an indica-

tion of apoptosis. After deparaffinization, TUNEL (in situ cell

death detection kit, Roche Applied Science, Indianapolis,

USA) kit was used according to the manufacturer’s instruc-

tions. The steps taken were as follows: Inhibition of endoge-

nous peroxidase in 0.3 % H2O2 in methanol for 30 min; rinse

in tap water and soaking in 50 mM Tris-buffered saline with a

pH of 7.6; pretreatment with microwave for 15 min in sodium

citrate buffer; rinse in tap water and soaking in TdT buffer for

5 min; incubating with TdT mixture at 37 OC for 60 min. Tdt

mixture contains dUTP which is biotin-labelled, allowing

binding of peroxidase-labeled streptavidin. And then, rinse in

10mM phosphate-buffered saline (PBS), pH 7.2; incubating

with peroxidase-labeled streptavidin for 15 min; rinse in

10mM PBS; reacting in the diaminobenzidine solution for 10

min; rinse in in tapwater; staining with Mayer’s hematoxylin

for 1 minute; rinse in tap water; dehydrating with xylene and

mounting. TUNEL stained slides were observed using a Nikon

Labophot microscope by a pathologist. Staining was evaluated

semi-quantitatively as follows: (0) no staining, (+) mild, (++)

moderate, and (+++) intense staining according to the dissem-

ination of the damage. The biochemical hallmark of apoptosis

was internucleosomal DNA fragmentation. TUNEL positive

follicles contained condensed nuclei, which was a typical fea-

ture of cells undergoing apoptosis. Follicular atresia and apop-

totic changes were evaluated in the oocyte and granulosa cells

and cysts were counted at a light microscopic examination.

Data analysis
Statistical analyses were performed using The Statistical

Package for Social Sciences version 10.0 (SPSS Inc, IL,

USA). Results are given in the text as mean ± standart error

(SE). Difference between the experimental groups with re-

spect to TUNEL activities and ovarian cysts were tested using

one-way ANOVA and post-hoc multiple comparisons (Least

significant difference, LSD). The level of significance was

p<0.05.    

Results

The semi-quantitative evaluation of TUNEL activities are

shown in Table 1. 

Table 1: Semi-quantitative evaluation of TUNEL activity*

Groups Grade of Staining

0 + ++ +++

Non-Px (n=7) 7 0 0 0

Px (n=7) 0 0 4 3

Px + Melatonin (n=7) 0 1 3 3

*:Light microscopy was used to evaluate dissemination of follicular
damage. Staining was graded semi-quantitatively as follows: (0) no
staining, (+) mild, (++) moderate, and (+++) intense staining. Non-
Px: Sham operated rats, Px: Pinealectomized rats, Px + melatonin:
Pinealectomized rats with exogenous melatonin treatment.

Sham group had normal oocyte nuclei that were counter-

stained blue by hematoxylin and were not stained for TUNEL.

Px group, however, had extensive TUNEL positive apoptotic

oocytes which were stained brown, indicating the presence of
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DNA fragmentation. Pinealectomy group had also some apop-
totic inflammatory cells (Fig. 1) which are presumably apop-
totic granulosa cells. Consequently, compared to sham group,
significantly higher TUNEL activities were observed in the Px
group (0.00±0.00 vs. 2.42±0.20, p=0.00). Surprisingly, mela-
tonin treatment did not reduce TUNEL positive oocyte and
granulosa cells (2.28±0.28). According to sham group, signifi-
cantly increased ovarian cysts were detected in the Px rats
(1.42±0.20 vs. 5.57±0.48), (Fig. 2a) and melatonin did not
prevent this increase (5.28±0.42), (Fig. 2b). Finally, Px and
melatonin groups were not significantly different than each
other regarding the ovarian cysts (p=0.608) and TUNEL ac-
tivities (p=0.623) at the end of study.

Figure 1: Intense nuclear staining in the follicle after pinealectomy
(TUNEL staining x 40)

Figure: 2a

Figure: 2b

Figure 2: Morphological aspects of the ovarian polycystosis of the
pinealectomized rats (a). Exogenous melatonin did not cause regres-
sion of ovarian cysts (b) (H&E x10). 

Discussion

Recent study we showed the disruptive effects of pinealec-

tomy on rat brain were prevented by melatonin treatment.23

We have extended our series of study on melatonin to cover its

in vivo effects on follicular development, atresia and pro-

grammed cell death. The molecular mechanism which under-

lies apoptotic DNA fragmentation with associated follicular

atresia is unknown. The vast majority of ovarian follicles

never ovulate and form corpora lutea, but become atretic at

different stages of follicular development.24 Ovarian apoptosis

can be regulated in vivo through different pathways. Previous

studies demonstrate that sex steroids and gonadotropins have

been shown to modulate the incidence of atresia in the ovary

.25,26 In rats, GnRH has been shown to act through specific

ovarian receptors 27 to block many of the trophic actions of go-

nadotropins.28 Estrogens and FSH inhibit, whereas androgens
29 and GnRH enhance internucleosomal DNA fragmentation.

A specific endonuclease responsible for digesting DNA is

present in the ovary.30,31

Melatonin acts directly by affecting the hypothalamic

functions involved in the inhibitory regulation of GnRH 4,21

Theoretically, melatonin should communicate either directly

or indirectly to the neuronal GnRH to regulate seasonal

changes in reproduction. One possible explanation of in-

creased follicular atresia after pinealectomy is that melatonin

deprivation increases the extent of apoptotic cell by leading

increase in GnRH secretion. A recent study had showed that

melatonin attenuated the GnRH-induced increase in LH se-

cretion from the ovine pars tuberalis.32 It is possible that the

action of pinealectomy on the ovarian endonuclease activity is

mediated through a Ca2+-dependent pathway, because GnRH

has been shown to increase intracellular Ca2+ concentrations

in granulosa cells.33,34 Study, in prepubertal rats, reported that

GnRH-a treatment produces an increase in ovarian follicle

DNA fragmentation by interfering with the FSH, cAMP and

growth factors.35 Billig et al.36 demonstrated that GnRH acts as

an atretogenic factor on granulosa cells and it increases apop-

totic DNA fragmentation in a time and dose dependent man-

ner. Another explanation of the high apoptotic cells in Px rats

most likely are the result of decreased antioxidant capacity.

Recently, data have been provided to suggest that the genera-

tion of reactive oxygen species in cells plays a fundamental

role in the initiation of cell death.37 Csaba et al.38 reported that

pinealectomy causes atrophy in the thymus gland.

Administration of antioxidants such as melatonin inhibits

apoptotic cell death in the thymus gland7,39 Similarly mela-

tonin counteracted bone marrow toxicity which was caused by

chemotherapy.40 Tilly et al.41 showed that granulosa cell apop-

tosis in rat ovarian follicles deprived of tropic hormone sup-

port is prevented by treatment with inhibitors of oxidative free
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radical formation.

There was a statistical difference between sham and Px

groups regarding the number of apoptotic cells. On the other

hand if Px causes an increase in GnRH and estrogen levels and

these agents cancel each others effects on cell apoptosis then

there should be no difference between the Px and the sham

groups. Although this observation seem contradictory, a care-

ful consideration of the events that happens after the removal

of the pineal gland may give a possible explanation to these

findings. Px causes a decrease in melatonin level which sub-

sequently causes an increase in GnRH and estrogen.

Exogenous melatonin administration may attenuate the

GnRH-induced increase in FSH, LH and estrogen secretion .42

Another plausible possibility is that melatonin acts directly by

affecting the hypothalamic functions involved in the in-

hibitory regulation of GnRH.4,21 Studies demonstrated that, in

rodents, melatonin has marked anti-gonadotrophic properties,

such as absence of follicles and corpora lutea.43 Tilly et al.41

showed that granulosa cells within antral follicles collected rat

ovaries exhibited extensive apoptosis after a 24-h incubation

in the absence of tropic hormone support. Inclusion of FSH in

the culture medium markedly reduced the extent of apoptosis
41,44 Other supporting findings indicate that circulating estro-

gens increase in pinealectomized rats. Teixeira et al.45 ob-

served that the endometrium of rats submitted to pinealectomy

presented hyperplasia, which was reversed with the use of

melatonin. However, in present study, melatonin replacement

did not reverse the events causing cell death as there was no

statistical difference between Px and melatonin groups.

Pharmacologically this means that the effects that are caused

by the removal of the pineal gland are not the consequences of

the induced lack of melatonin.

There was a statistical difference between sham and Px re-

garding the ovarian cysts. Pinealectomy induced melatonin

deprivation possibly produced gonadotrophic alterations,

leading to ovarian cyst development. The decreased levels of

of melatonin after pinealectomy may have modified go-

nadotrophin secretion, increasing the synthesis of LH. Prata et

al.46 reported a strong relationship between melatonin and the

rodent equivalent of PCOS. However, in the present study, Px

and melatonin groups were not significantly different than

each other regarding the ovarian cysts. This may be result of

the dose and duration of melatonin administration. Another

possibility is that occurence of ovarian cysts after the

pinealectomy may not the consequences of the decreased

melatonin levels.

Pinealectomy induced melatonin deprivation indirectly in-

duces apoptotic cell death in the ovary. Pinealectomy related

follicular atresia may be initiated, at least in part, as a conse-
quence of increased GnRH secretion and inadequate protec-
tion of maturing granulosa cells from the damaging effects of
reactive oxygen species. This apoptosis cannot be prevented
by exogenous melatonin.  This study have some limitations,
but this findings provide a basis for future studies on the
mechanism underlying follicular atresia and on the signal
transduction pathway involved in melatonin regulation of the
apoptotic changes responsible for follicular damage. However
this hypothesis must be carefully tested on several occasions
where varying levels and durations of melatonin administra-
tion are used.  

Melatoninin Pinealektomize Rat Overinde
Folikül Gelişimi ve Apopitotik Değişikliklere
Etkisi

Önder ÇELİK, Hakan PARLAKPINAR 
Şeyma HASÇALIK, Bülent MIZRAK, Murat ÖZŞAHİN

Ankara, Türkiye

Bu çalışma ovaryan morfoloji, oosit ve granuloza hücre apopi-

tozisine pinealektomi ve ekzojen melatonin replasmanının et-

kisini saptamak amacıyla planlandı. Yirmibir adet Wistar rat üç

guruba ayrıldı: (I) Sham grup (Non-Px); (II) pinealektomize

grup (Px); ve (III) pinealektomize + melatonin grup. Sham ve

Px gruba etanol verilirken, III. gruba 4mg/kg melatonin ve rildi.

Foliküllerdeki apopitotik de ği şiklikleri saptamak için terminal

deoksinukleotidil transferaz mediated deoksiuridin 5- trifosfat

(TUNEL) yöntemi kullanıldı. TUNEL ile boyanmış alanlar semi-

quantatif olarak sayıldı ve ovaryan kist sayıları kaydedildi.

Pinealektomize grupta, TUNEL aktivitesi sham grubunda göz-

 lenenden belirgin olarak daha yüksekti. Melatonin uygula ması

TUNEL ile boyalı folikül sayısını azaltmadı. Pi ne a lek tomi ve

melatonin grupları arasında TUNEL aktivitesi bakımından be-

lirgin bir fark yoktu. Pinealektomi sonrası ovaryan kist

oluşumunda belirgin artış oldu ve melatonin uygulaması bu

artışı önlemedi. Px ve melatonin gruplarında TUNEL aktivitesi

ve ovaryan kist oluşumu benzerdi.

Pinealektomi ovaryan kist oluşumu ve foliküler apoptozisi

artırır. Eksojen melatonin uygulanımı pinealektomi etkilerini ge-

ri çevirmez.

Anahtar Kelimeler: Rat overi, Apoptosis, Ovarian kist, TUNEL,

Pinealektomi, Melatonin
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