Immersion in Water During Active Labor Decreases Postpartum Hematocrit Fall Following Vaginal Delivery

Gul Nihal BUYUK1, Serkan KAHYAOGLU2, Ezgi TURGUT3, Omer Hamid YUMUSAK1, Caner KOSE1, Yaprak USTUN1

Ankara, Turkey

ABSTRACT

OBJECTIVE: The objective of the study was to investigate the effect of immersion in water strategy during labor on postpartum bleeding by calculating the postpartum reduction rates of the hematocrit values of the patients.

STUDY DESIGN: The study groups consisted of 84 women undergoing vaginal delivery with immersion in water during labor (group 1) and the control group (group 2) of 84 women undergoing normal vaginal delivery. Patients who have received additional medical and surgical interventions for the alleviation of postpartum hemorrhage, patients who have undergone an episiotomy and/or perineal trauma were not included in the study. All data were taken from patients who have delivered with spontaneous vaginal delivery. Postpartum hematocrit fall rates of the groups have been compared and the effect of immersion in water on postpartum hemorrhage has been evaluated.

RESULTS: The study groups consisted of 84 women undergoing vaginal delivery with immersion in water during labor (Group 1) and the control group (Group 2) of 84 women undergoing vaginal delivery at the hospital. The women in the two groups were matched with respect to age, parity, birth weight and gestational age. The mean age of the women was 29.8±4.8 and 30.5±4.9 respectively. The mean hematocrit difference in the first group was 2.08±1.88 and in the second group was 3.81±1.55. The mean percentage of hematocrit reduction in the first group was 5.71% and in the second group 10.23%.

CONCLUSION: Our data showed that mean hematocrit level decreases among women following vaginal delivery more than women who give birth vaginally within immersion in water during labor. The percentage of hematocrit reduction in the water birth group was lower than in the control group. Water birth seems to facilitate uterine contractions more efficiently following vaginal delivery.

Keywords: Hematocrit, Postpartum hemorrhage, Vaginal delivery, Water birth

1 University of Health Sciences, Zekai Tahir Burak Women Health Care, Education and Research Hospital Department of Obstetrics and Gynecology, and 2 Department of Reproductive Endocrinology, Ankara Turkey

3 Gazi University, Faculty of Medicine Department of Perinatology, Ankara, Turkey

Address of Correspondence: Gul Nihal Buyuk
University of Health Sciences, Zekai Tahir Burak Women Health Care, Education and Research Hospital
06230 Altindag, Ankara, Turkey
gnu@windowslive.com

Submitted for Publication: 24.07.2018
Accepted for Publication: 01.10.2018

ORCID IDs of the authors:
GN.B.: 0000-0003-4405-2876, S.K.: 0000-0001-8964-3552,
E.T.: 0000-0002-5509-7888, OH.Y.: 0000-0002-6632-5890,
C.K.: 0000-0002-3044-4804, Y.U.: 0000-0002-1011-3848

Introduction

Water birth is an option for birth all over the world. Immersion in water during labor has been popularized over the past several decades. Carefully managed water birth is both an attractive and low-risk birth management for healthy pregnancies (1).

The prevalence of this practice is uncertain because it has not yet been studied in births outside of homes and birth centers, and the data are not recorded on birth certificates (1). For example, the United Kingdom has recently reported the rates of immersion ranging from 1.5% of hospital deliveries to 58% of births in freestanding midwifery units (2).

Commonly, immersion is referred to as “water birth,” but effects and outcomes of immersion may be different during the first and the second stages of labor, including delivery. ACOG draws a distinction between these two events and declared and opinion that “immersion in water during the first stage of labor may be associated with decreased pain or the use of anesthesia and a decreased labor duration.” A warning has also been stated that there are no known benefits for ei-
ther mother or baby during the second stage of labor and
cause concern for serious harm (3, 4). Immersion in water dur-
ing the first stage of labor may be associated with shorter
labor and decreased use of spinal and epidural analgesia
and may be offered to healthy women with uncomplicated preg-
nancies between 37 0/7 weeks and 41 6/7 weeks of gestation.
The recommendation of the American College of Obstetricians and Gynecologists is that birth occurs on land, not in water (4-10).

In addition to providing freedom of movement and com-
fort to the mother in the water, the water lift increases the ef-
effectiveness of contractions by reducing the pressure on the
uterus, thus shortening the duration of the action. Keeping the
water temperature around the normal body temperature helps
the mother by providing endorphin release (5-8). It also re-
duces postnatal breastfeeding problems as it provides pain re-
lief for the mother (6, 8). Water birth increases their chances of
attaining the goal of a natural birth without intervention and
continues to provide a platform for maternity care reform, dis-
covers about consciousness and birth, and a new respect for
fetal and newborn development (4).

Immersion during labor and delivery needs to establish
rigorous protocols for candidate selection; maintenance and
cleaning of tubs and pools; infection control procedures, in-
cluding standard precautions and personal protective equip-
ment for health care personnel; monitoring of women and fe-
tuses at appropriate intervals while immersed, and moving
women from tubs if urgent maternal or fetal concerns or com-
plications develop (4).

The water birth cabin used in our hospital is ovoid, 161 cm
in length, 124 cm in width and 65 cm in depth. Before each
application, culture is taken to check that the cuvette does not
contain an infectious agent. The bath is filled with filtered
water at 34-37 °C. After each birth, the bathtub is cleaned and
filled with water again and circulated with 5.000 ppm chlorine
tablet. Cultures are removed after cleaning. After making sure
that the culture results are not an infection agent, the tub is
prepared for a new birth.

We tried to investigate the effect of immersion during
labor on postpartum bleeding by calculating the reduction
rates of the hematocrit values of the patients.

Material and Method

This retrospective study was conducted at the Delivery
Department of Obstetrics of the University of Health Sciences
Zekai Tahir Burak Women’s Health Education & Research
Hospital between January 2017 and January 2018. Ethics
committee approval was obtained for the study from our hospi-
tal (#18/27.12.17). Study and control groups included
women undergoing vaginal delivery with immersion in water
during labor and women undergoing vaginal delivery. Data
were collected regarding all women’s age, gestation, parity,
birth weight, first hematocrit levels upon admission to the
labor ward, and postpartum hematocrit levels checked after
six hours following delivery. Exclusion criteria were pre-ex-
histing hypertension, pre-eclampsia, pre-existing diabetes mel-
litus, glucose intolerance, chronic diseases, premature rupture
of fetal membranes and other gestational disorders. Patients
who have undergone an episiotomy procedure, patients who
have experienced vaginal lacerations and patients who needed
additional oxytocin infusion, methyl ergovine administration
and/or misoprostol utilization and primiparous patient were
not included in the study due to limiting bias and directly
measuring postpartum hematocrit fall without any other risk
factors for postpartum hemorrhage. All data were taken from
patients who have experienced uneventful spontaneous vagi-
nal delivery. Liberally, 20 units of oxytocin were administered
to all patients after delivery. The study was approved by the
local ethics committee of our hospital.

Statistical analysis was performed by using IBM SPSS
Statistics Software (22.0, SPSS Inc., Chicago, IL). Data has
been evaluated for normal distribution by using the
Kolmogorov-Smirnov test. The continuous variables were
presented by means ± standard deviation and compared by
using the independent samples t-test when the distribution was
normal. The nonparametric variables and data without normal
distribution were tested by using the Mann- Whitney U test.
The comparison of categorical variables was made by using
Fisher’s exact test, or the chi-square test according to the rel-
vant statistical test based on patient numbers regarding com-
pared variables. All p values <0.05 were considered statisti-
cally significant.

Results

The study groups consisted of 84 women undergoing
vaginal delivery with immersion in water during labor
(group 1) and the control group (group 2) of 84 women un-
dergoing normal vaginal delivery at the hospital. The women
in the two groups were matched with respect to age, parity,
birth weight and gestational age. Age, parity, gestational age
in weeks, first hemoglobin (Hb) upon admission, postpartum
Hb level 6 hours after delivery, first hematocrit (Hct), post-
partum Hct level 6 hours after delivery, percentage of Hct re-
duction, and birth weight in grams among study and control
groups have been compared. The mean age of the women
was 29.8±4 and 30.5±4.9 respectively. The mean gestational
age was 39.1±1.1 and 39.4±1.2. The mean parity was found
as 2.3±0.4 and 2.4±0.6. The mean hematocrit difference in
the first group was 2.08±1.88 and in the second group was
3.81±1.55. The mean percentage of hematocrit reduction in
the first group was 5.71% and in the second group 10.23%
(Table 1).
Postpartum fever was observed in 1 patient in the first group and 2 patients in the second group. There was no significant difference between the two groups. Episiotomy infection was not observed in the patients in both groups.

Discussion

Water birth is an option for birth all over the world. Carefully managed water birth is both an attractive and low-risk birth management for healthy pregnancies (1). ACOG has previously stated that “immersion in water during the first stage of labor may be associated with decreased pain or the use of anesthesia and a decreased labor duration.” But a warning has also been defined that there are no known benefits to either mother or baby during the second stage of labor and cause for concern of serious harm (4). Warm water immersion hydrotherapy during labor provides comfort, supports relaxation, and is a safe and effective non-pharmacologic pain relief strategy that promotes physiological childbirth (2-4).

There have been many studies regarding the benefits of immersion in water during the first stage of labor like reduced pain, episiotomy and perineal trauma rates. In a Cochrane review in 2009; immersion in water during the first stage of labor did not reduce perineal trauma and episiotomy (9). On the other hand, in a study conducted in our hospital on immersion in water during the first stage of labor reduced episiotomy for both multiparous and nulliparous women (6).

Hydrotherapy during labor may promote relaxation and decrease pain without the risks caused by other treatments. In a pilot study, the psychophysiological effects of hydrotherapy on maternal anxiety and pain during labor were examined in 2001. The findings offer preliminary support for the therapeutic effects of bathing in labor for acute, short-term anxiety and pain reduction (11). In a retrospective cohort study in 2017; immersion in water during the first stage of labor reduces the pain and pain relief that your mother feels (12).

In a retrospective study in Australia in 2013; researchers found that there was no statistically significant difference in the average blood loss after birth between the two birth groups in their study (13). Our study has been conducted by matching the study and control group for measuring the exact hematocrit fall just caused by childbirth itself without any other postpartum hemorrhage risk factor. Previous studies have demonstrated that immersion in water during the birth process, maternal oxytocin secretion decreases. This decrease might result in more effective oxytocin discharge during the postpartum period and serve as a protective factor for postpartum hemorrhage (14). The duration of the 3rd stage of labor, which is the delivery of the placenta is also significantly reduced after water births. This minimizes the amount of blood loss during this period. The lower blood loss in water births can also be explained by the hydrostatic pressure in the pool (15,16).

In this study, we tried to investigate the effect of immersion during labor on postpartum bleeding by calculating the reduction rates of the hematocrit values of the patients. Mean postpartum hematocrit level fall for women undergoing normal vaginal delivery was found to be higher than women undergoing vaginal delivery with immersion in water during labor. Immersion in water during labor might be a protective measure for postpartum hemorrhage due to its positive effects on pain, labor progress and physiology. Therefore, studies involving larger series of cases may increase the reliability of our findings.

Conclusion

As a result, we found that in our own case mean postpartum hematocrit level fall for women undergoing normal vaginal delivery was higher than women undergoing vaginal delivery with immersion in water during labor. Studies involving more patients will be guided in the future.

*: Acknowledgments: “None”
Conflict of Interest: “The authors reported no conflict of interest”
Funding: “none”

Table 1: Demographic clinical and laboratory characteristics of the study group (n=168)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Water immersion (n=84)</th>
<th>Control group (n=84)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>29.8±4.8</td>
<td>30.1±4.9</td>
<td>0.39*</td>
</tr>
<tr>
<td>Parity</td>
<td>2.3±0.4</td>
<td>2.4±0.6</td>
<td>0.45*</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>39.1±1.1</td>
<td>39.4±1.2</td>
<td>0.07*</td>
</tr>
<tr>
<td>First Hb (g/dL)</td>
<td>13.2±1.6</td>
<td>11.8±1.2</td>
<td>0.50*</td>
</tr>
<tr>
<td>Last Hb (g/dL)</td>
<td>11.1±1.5</td>
<td>10.7±1.2</td>
<td>0.058*</td>
</tr>
<tr>
<td>First Hct (%)</td>
<td>36.3±3.8</td>
<td>37.1±3.3</td>
<td>0.26*</td>
</tr>
<tr>
<td>Last Hct (%)</td>
<td>34.2±3.9</td>
<td>33.2±3.1</td>
<td>0.068*</td>
</tr>
<tr>
<td>Hematocrit reduction (%)</td>
<td>2.0±1.8</td>
<td>3.8±1.5</td>
<td><0.001*</td>
</tr>
<tr>
<td>Percentage of hematocrit reduction (%)</td>
<td>0.05±0.05</td>
<td>0.10±0.04</td>
<td><0.001*</td>
</tr>
<tr>
<td>Birthweight (grams)</td>
<td>3378±446</td>
<td>3286±350</td>
<td>0.14**</td>
</tr>
</tbody>
</table>

*: Mann Whitney U test p value, **: Independent samples t test p value, Hb: hemoglobin, Hct: hematocrit
References

