Logical Basis of Cerebrospinal Fluid and Serum S-100B Protein Measurement in Pregnant Women to Detect any Possible Cerebral Damage

Nilüfer ÇELİK¹, Önder ÇELİK², Halis CANPOLAT³, Osman EVLİYAOĞLU¹, H. Muammer KARAKAŞ⁴

Malatya, Turkey

OBJECTIVE: The aim of the study was to consider logical basis of serum and cerebrospinal fluid (CSF) S100B measurement in pregnant females to detect any cerebral damage.

STUDY DESIGN: CSF and serum samples from 14 pregnant patients (age: 20–34 years) were obtained during spinal anesthetic procedure of cesarean section. The serum samples from 9 non-pregnant patients (22–36 years) without an organic brain disease were used as normative data. S-100B levels in serum and CSF samples were measured with electrochemiluminescence immunocassay method. The CSF and blood serum levels of pregnant and blood serum levels of pregnant and nonpregnant females were compared using Kruskal-Wallis and Mann-Whitney U-tests.

RESULTS: Serum S100B protein levels of pregnant females were significantly higher [0.66±0.06 ng/ml] than those observed in [0.06±0.00 ng/ml] nonpregnant females (p<.0001). There was a significant difference between the S100B protein levels of CSF and blood serum (p<0.05) in pregnant females. However the correlation between these two levels was insignificant (p=0.473). CSF S100B levels of pregnant subjects were significantly higher than the serum levels of pregnant and nonpregnant subjects (p<0.0001).

DISCUSSION: These results prove that the maternal serum and CSF S100B protein levels are independently related to each other in pregnancy.

Key Words: S-100B, Pregnancy, Cerebrospinal fluid, Serum

Experimental & Clinical Article

Introduction

The S100 is an acidic calcium-binding protein with a molecular weight of 21 kDa.¹ It is more predominant in astroglial cells and it acts on neuronal cells as a neurotrophic factor. Although the function of S100 is not fully known, it was shown to be involved in the regulation of cell growth.¹⁻³ Initially regarded as a central nervous system (CNS) specific protein,² it actually exists in diverse non-neural locations such as striated muscles, heart, kidney,⁵ melanocytes, adrenal glands, Leydig cells, adipocytes and trophoblastic cells.⁵⁻⁶ As it is predominantly found in the CNS, many authors have have suggested that an increase in S100B protein in CSF could be a potential marker of neural injury, and increase in blood could be a potential marker of blood brain barrier dysfunction.⁹

¹Beydağı State Hospital Clinical Biochemistry, ²Departments of Obstetrics and Gynecology, ³Anesthesiology and ⁴Radiology İnönü University School of Medicine, Malatya

Address of Correspondence: Nilüfer Çelik
Beydağı State Hospital, Clinical Biochemistry, Malatya
nilucerelik35@hotmail.com

Submitted for Publication: 07.05.2009
Accepted for Publication: 15.06.2009

Accordingly, increased S100B levels in CSF and blood have encountered in several pathologic conditions, such as head trauma,¹⁰ stroke,¹¹ schizophrenia,¹² cerebral bleeding, ischemic stroke, brain tumours, meningitis and encephalitis.¹³⁻¹⁶

The studies on S100B levels in maternal serum, amniotic fluid and cord blood are very limited.¹⁷⁻²⁰ This protein has been shown to be higher in the amniotic fluid of monoamniotic twins than of singleton pregnancies.²¹,²² Increased S100B protein levels was also been found in amniotic fluid of fetuses with Down syndrome.²³ S100B protein levels in the cord blood were found to be higher in vaginal delivery than in cesarean section.²⁴ CSF S100B levels, on the other hand, have not been previously reported in pregnancy and its clinical significance in pregnancy therefore was indetermined. There may be hypothetical cerebral and BBB changes during this physiological event, and the determination of CSF and blood serum S100B levels may help us to disclose these changes indirectly. The purpose of this study, therefore, was to consider logical basis of serum S100B protein measurement in pregnant females to detect any possible cerebral damage. S100B protein in maternal CSF and blood serum were measured and the findings were evaluated with the ones obtained from the blood serum of non-pregnant females. This is also the first report in the literature comparing serum and CSF S100B protein levels in pregnancy.
Material and Method

Nine non-pregnant and fourteen pregnant women (thirty four or higher gestational weeks) were included in the study. Exclusion criteria for pregnant and non-pregnant women were as follows: Brain damage following head trauma, cerebral bleeding, ischemic stroke or known medical history that implies neurological conditions causing acute and chronic brain injury. Estimated gestational age was determined by using the date of the last menstrual period and it was also verified with ultrasonography. These pregnancies were terminated with cesarean section (C/S). In the course of the procedure a spinal anesthesia was performed. A 4-mL venous blood sample was taken by venipuncture before a 0.9% NaCl infusion. After the infusion, spinal anesthesia was performed in a seated position from the fourth to fifth lumbar space with a 25 gauge Quincke needle. Before the administration of local anesthetic to the subdural space, 2 mL of CSF was taken from the subjects. Subjects with hemorrhagic samples were excluded from the study. Blood samples were also taken from nonpregnant women by venipuncture. To determine the S100B protein level, CSF and blood samples were centrifuged on receipt and stored at -50 ºC until assayed. S-100B levels in serum and CSF samples were measured with electrochemiluminescence immunoassay method on the Roche Elecsys 2010 immunoassay analyzer (Roche Elecsys 2010, Mannheim, Germany) using commercial S100B kit (Roche Diagnostics GmbH, Mannheim, Germany).

Statistical analysis

Results are given as means ± SEM. The Statistical Package for Social Sciences (SPSS), version 13.0, was used for statistical analysis. Individual group parameters were assessed with one-sample Kolmogorov-Smirnov Z-test and were found to be abnormally distributed (p<0.05). Statistical comparisons between groups were performed by nonparametric Kruskal-Wallis and Mann-Whitney U-test. Spearman’s Rank Order Correlation coefficients were used to assess meaningful associations between the maternal serum and CSF S100B protein levels. For all comparisons, statistical significance was defined as p<0.05.

Results

In pregnant women, there was a significant difference between CSF S100B [1.08 ± 0.14 ng/ml] and serum S100B [0.66 ± 0.06 ng/ml] protein levels (p<0.004). Although statistically insignificant, a negative correlation was existed between maternal serum and maternal CSF S100B levels (r=-0.209, p=0.473). Serum S100B protein levels of pregnant women were significantly higher [0.66 ± 0.06 ng/ml] than those observed in [0.06 ± 0.00 ng/ml] nonpregnant women (p<0.0001). CSF-S100B protein levels in pregnant women were higher than serum S100B protein levels in nonpregnant subjects [1.08 ± 0.14 ng/ml vs. 0.06 ± 0.00 ng/ml; p<.0001] (Figure 1).

Discussion

This study is the first investigation in the literature that was designed to assess CSF S100B in pregnancy. In that group its mean level in CSF was found to be 1.08 ng/ml. CSF S100B levels were not compared between pregnant and nonpregnant controls due to the nature of the latter. These were all non-pregnant females that prevented the use of an invasive procedure (i.e. CSF tapping). However, the data may be compared with the results of previous studies on normal subjects.9, 16, 25 According to these studies the mean concentration in CSF samples obtained from individuals with no evidence of neurological disease varies between 0.20 and 1.5 ng/ml.25-27 Persson et al.9 quote a wider range that encompasses 1.0 to 6.8 ng/ml whereas Noppe et al.16 reported a value less than 0.8 ng/ml. Our findings were similar to the ones listed above except the latter value which is slightly lower.

The second step of the study was conducted to reveal a possible difference between pregnant and nonpregnant women regarding serum S100B protein levels. Considering the similarity of CSF S100B levels in both groups studied, any observed differences in serum levels should originate from extraneural sources. This protein was found to have a serum level of 0.66 ng/ml in pregnant women, which was significantly higher than those observed in nonpregnant women (0.06 ng/ml). Although the level in pregnant was much higher than the one that is found by Abraha et al.20 (0.11 ng/ml), the advanced gestational range of our subjects (36-40 wk vs. 11-38 wk) explains the difference.

In spite of the high S100B levels in maternal serum the origin of this increase is not clear. Being a neural marker, its increase in maternal serum may either show a subtle brain barrier dysfunction which may facilitate the leakage of the protein to the blood circulation or may be the result of secretion from extraneural sources.28 Due to the insignificant correlation between CSF and serum S100B protein levels, it is un-
likely that CSF-S100B protein may be responsible for the increase in serum S100B concentrations.

Although there is not another comparable study that documents the relationships between maternal CSF and serum levels of S100B, there are some studies that have documented an inverse relationship similar to one stated above. In our previous study we had demonstrated an inverse relationship between CSF and serum leptin levels in normotensive pregnant subjects.²⁹ We also found that independent regulation of nitric oxide in the CSF and serum compartments of normotensive and preeclamptic women.³⁰ The current study complements the previous studies and supports our hypothesis that the cerebrovascular and blood brain barrier alterations in uncomplicated pregnancy are not directly linked to the protein escape from CSF into the maternal circulation. Our hypothesis on the previous studies and supports our hypothesis that the cerebrovascular and blood brain barrier alterations in uncomplicated pregnancy are not directly linked to the protein escape from CSF into the maternal circulation. Our hypothesis on the lack of blood brain barrier dysfunction, is further supported by the findings of Abraha et al.³¹ who investigated subjects with lack of blood brain barrier dysfunction, is further supported by

The current study complements the previous studies and supports our hypothesis that the cerebrovascular and blood brain barrier alterations in uncomplicated pregnancy are not directly linked to the protein escape from CSF into the maternal circulation. Our hypothesis on the lack of blood brain barrier dysfunction, is further supported by the findings of Abraha et al.³¹ who investigated subjects with lack of blood brain barrier dysfunction, is further supported by

The current study complements the previous studies and supports our hypothesis that the cerebrovascular and blood brain barrier alterations in uncomplicated pregnancy are not directly linked to the protein escape from CSF into the maternal circulation. Our hypothesis on the lack of blood brain barrier dysfunction, is further supported by the findings of Abraha et al.³¹ who investigated subjects with lack of blood brain barrier dysfunction, is further supported by

To explain the significant increase of S100B in the serum, diverse non-neural locations as stated in the introduction should be considered. In pregnant subjects, the causative factors may likely be the ones related to gestation such as amnion, villous and intermediate trophoblasts, decidual cells of fetal membranes and in endothelial cells of umbilical vessels at all gestational ages.³²⁻³⁴ Several studies that support our findings were performed during previous years.¹⁸,¹⁹ Marinoni et al.⁷ reported an increase in S100B protein concentration in normal placenta with advancing gestation. Gazzolo et al.³⁵ observed a positive correlation between S100B level and gestational age in amniotic fluid. Another source of increased serum S100B protein levels may be adipose tissue. Michetti et al.⁸ reported that adipocytes contain S100B protein in concentrations comparable to the nervous tissue. Results of the recent prospective study indicate that subcutaneous fat begins to accumulate around 6 weeks after conception and continues to increase through 35 weeks of pregnancy.³³

Finally, we suggest that pregnancy related physiologic changes may alter serum S100B protein levels but this effect are not accompanied by changes in the S100B content in CSF. Taken together, our own findings and data from the literature suggest the possibility of a fetal-placental or adipocyte origin for at least a part of S100B protein detected in the serum. CSF-S100B protein appears not to influence the levels of serum S100B protein. Therefore, S100B protein should not be used to predict any neural damage in pregnancy as extracerebral sources largely affect its levels in the latter. In pregnancy, prominent contribution of placenta and fetal sources may obscure any slight deviation that would be caused by cerebral structures.

References

5. Isole T, Takahashi K, Okuyama T. S100a0 (alpha alpha) protein is present in neurons of the central and peripheral nervous system. J Neurochem. 1984;43:1494-6.
7. Marinoni E, Di Iorio R, Gazzolo D, Lucchini C, Michetti F, Corvino V, Cosmi EV. Ontogenetic localization and dis-

Gynecology Obstetrics & Reproductive Medicine 2009;15:2 83